Molecular mechanisms of estrogen-mediated vascular protection

Original title / Originaltitel
Molekulare Mechanismen Oestrogen-vermittelter Gefässprotektion

Summary / Zusammenfassung
Despite the clear-cut gender differences in the morbidity of atherosclerosis in the first five decades of life the important role of estrogens for the development of atherosclerosis has recently been subject of much controversy. This controversy is due to the negative results of prospective randomized clinical studies including HERS I, HERS II, and WHI, in which postmenopausal women with and without coronary artery disease were treated during years with so-called “conjugated equine” estrogens and the synthetic progestin medroxyprogesterone acetate. Equine estrogens contain more than 30 different substances, including testosterone and steroids of unknown activity. At the time of inclusion of the study Patients were many years (decades) after menopause and received very high doses of hormones. The recent identification of new targets of sex hormones, including new estrogen receptors and receptor subtypes and the lack of knowledge about their function and regulation indicates that the issue of hormone treatment is far more complex than previously thought. In this project is aimed to identify mechanisms involved in the cardiovascular protective effects of natural sex steroids and to clarify the role of sex steroid receptors in the cardiovascular system in health and disease, particularly that of the novel G protein-coupled intracellular transmembrane estrogen receptor gpER.

Supported by SNSF grants Nr. 58 421, Nr. 58 426, Nr. 108 258 and Nr. 122 504
Weitere Informationen unter http://www.mimed.ch/research/projects/

Publications / Publikationen
Role of GPER in estrogen-dependent nitric oxide formation and vasodilation.
N.C. Fredette, M.R. Meyer, E.R Prossnitz
J Steroid Biochem Mol Biol 76, 65-72, 2018

GPER blockers as Nox downregulators: a new drug class to target chronic non-communicable diseases
M.R. Meyer, M. Barton
J Steroid Biochem Mol Biol 176, 82-87, 2018

Twenty years of G protein-coupled estrogen receptor GPER: historical and personal perspectives
M. Barton, E. J. Filardo, S.J. Lolait, P. Thomas, M. Maggiolini, E.R. Prossnitz
J Steroid Biochem Mol Biol 176, 4-15, 2018

Rapid vasodilation to raloxifene: role of estrogen receptors and off-target effects
M. Barton, E.R. Prossnitz.
Br J Pharmacol 174, 4201-4202, 2017

GPER mediates functional endothelial aging in renal arteries
Pharmacology 100, 188-193, 2017

Obligatory role for GPER in cardiovascular aging and disease
Estrogen signaling in the adrenal cortex: implications for blood pressure sex differences
T. Carrocia, T.M. Seccia, M. Barton, G.P. Rossi
Hypertension 86, 840-848, 2016

Estrogens and coronary artery disease: new clinical perspectives
M.R. Meyer, M. Barton

GPER is required for the age-dependent upregulation of the myocardial endothelin system
M.R. Meyer, N.C. Fredette, G. Sharma, M. Barton, E.R. Prossnitz
Life Sci 159, 61-65, 2016

Not lost in translation: Emerging clinical importance of the G protein-coupled estrogen receptor GPER
M. Barton
Steroids 111, 37-45, 2016

Emerging roles of GPER in diabetes and atherosclerosis
M. Barton, E.R. Prossnitz

Trends Endocrinol Metab 26, 185-192, 2015
G protein-coupled estrogen receptor inhibits vascular prostanoid production and activity
M.R. Meyer, N.C. Fredette, M. Barton, E.R. Prossnitz
J Endocrinol 227, 61-69, 2015

Nicolaus Copernicus and the rapid vascular responses to aldosterone
M. Barton, M.R. Meyer
Trends Endocrinol Metab 26, 396-398, 2015
G Protein-coupled estrogen receptor protects from atherosclerosis
Sci Rep 4, 7564, 2014

Estrogen biology: New insights on GPER function and clinical opportunities
E.R. Prossnitz, M. Barton
Mol Cell Endocrinol 389, 71-83, 2014
Alike but not the same: Anatomic heterogeneity of estrogen receptor- mediated vasodilation
M. Barton, M.R. Meyer, E.R Prossnitz
Mechanisms and therapy of atherosclerosis and its clinical complications
M. Barton
Curr Opin Pharmacol 13, 149-153, 2013
Cholesterol and atherosclerosis: Modulation by estrogen
GPER regulates endothelin-dependent vascular tone and intracellular calcium

Project Leadership and Contacts / Projektleitung und Kontakte
Prof. Dr. Matthias Barton (Project Leader) barton@access.uzh.ch
Dr. Matthias Meyer
Dr. Oliver Baretella

Funding Source(s) / Unterstützt durch
SNF (Personen- und Projektförderung), Foundation, Others

In Collaboration with / In Zusammenarbeit mit
Prof. H. Li, University of Mainz Germany
Prof. E. Prossnitz, University of New Mexico United States
Prof. M. Genoni, Triemlispital Zürich Switzerland

Duration of Project / Projektdauer
Jun 2005 to Dec 2020