Influence of norepinephrine on isolated arterial and jugular venous neutrophils in patients with severe traumatic brain injury

Summary / Zusammenfassung

BACKGROUND:
Neutrophils contribute to evolving tissue damage by releasing various cytokines which, in turn, induce a plethora of different destructive cascades. Stimulation of adrenergic receptors by e.g., norepinephrine which is administered in clinical routine can activate neutrophils. This, in turn, could aggravate underlying tissue damage.

MAIN HYPOTHESES:
1. Cerebral sequestration of neutrophils reflected by positive arterio-jugular venous differences in neutrophils coincide with signs of cerebral metabolic impairment
2. Norepinephrine concentration-dependent stimulates isolated neutrophils

STUDY DESIGN:
1. Changes in arterial and jugular venous differential blood counts including analysis of different cytokines and adhesion molecules as well as parameters of cerebral metabolism are determined daily in patients suffering from severe traumatic brain injury to investigate pathological impact of neutrophils.
2. Arterial and jugular venous neutrophils are isolated daily and stimulated with norepinephrine to characterize functional changes over time and to determine the influence of the injured brain on isolated neutrophils.

Publications / Publikationen

Tschuor C, Asmis LM, Lenzlinger PM, Tanner M, Härter L, Keel M, Stocker R, Stover JF.
In vitro norepinephrine significantly activates isolated platelets from healthy volunteers and critically ill patients following severe traumatic brain injury.

Stover JF, Steiger P, Stocker R
Controversial issues concerning norepinephrine and intensive care following severe traumatic brain injury.
Eur J Trauma 2006; 32:10–27

Van Landeghem FK, Schreiber S, Unterberg AW, Von Deimling A, Stover JF.
Differential concentration-dependent effects of prolonged norepinephrine infusion on intraparenchymal hemorrhage and cortical contusion in brain-injured rats.

Stover JF, Sakowitz OW, Schöning B, Rupprecht S, Kroppenstedt SN, Thomale UW, Woiciechowsky C, Unterberg AW.
Norepinephrine infusion increases interleukin-6 in plasma and cerebrospinal fluid of brain-injured rats.

Kroppenstedt SN, Thomale UW, Griebenow M, Sakowitz OW, Schaser KD, Mayr PS, Unterberg AW, Stover JF.
Effects of early and late intravenous norepinephrine infusion on cerebral perfusion,
microcirculation, brain-tissue oxygenation, and edema formation in brain-injured rats.
Kroppenstedt SN, Sakowitz OW, Thomale UW, Unterberg AW, Stover JF.
Influence of norepinephrine and dopamine on cortical perfusion, EEG activity, extracellular
 glutamate, and brain edema in rats after controlled cortical impact injury.
Stover JF, Sakowitz OW, Thomale UW, Kroppenstedt SN, Unterberg AW.
Norepinephrine-induced hyperglycemia does not increase cortical lactate in brain-injured rats.
Kroppenstedt SN, Sakowitz OW, Thomale UW, Unterberg AW, Stover JF.
Norepinephrine is superior to dopamine in increasing cortical perfusion following controlled
cortical impact injury in rats.

Keywords / Suchbegriffe
neutrophils, norepinephrine, traumatic brain injury

Project Leadership and Contacts / Projektleitung und Kontakte
Prof. Dr. med. John F. Stover, MD (Project Leader) john.stover@access.unizh.ch

Funding Source(s) / Unterstützt durch
SNF (Personen- und Projektförderung), Foundation

In Collaboration with / In Zusammenarbeit mit
Dr. rer. nat. Luc Härtel, Division of Trauma Surgery, Department of Surgery, University Hospital Zuerich
Dr. med. Lars Asmis, Institute of Clinical Hematology, Department Internal Medicine, University Hospital Zuerich

Duration of Project / Projektdauer
Jun 2007 to Jul 2009